
Singular behaviour of electrons and of composite fermions in a finite effective field

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1996 J. Phys.: Condens. Matter 8 6073

(http://iopscience.iop.org/0953-8984/8/33/013)

Download details:

IP Address: 171.66.16.206

The article was downloaded on 13/05/2010 at 18:32

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/8/33
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter8 (1996) 6073–6078. Printed in the UK

Singular behaviour of electrons and of composite fermions
in a finite effective field

S Curnoe and P C EStamp
Department of Physics and Astronomy, University of British Columbia, Vancouver,
BC V6T 1Z1, Canada

Received 23 January 1996

Abstract. We calculate the self-energy6n(ε) of fermions in Landau leveln, in a finite
field. Two cases are considered, in which fermions couple either to gauge fluctuations (as
in the composite fermion gauge theory) or to phonons, as an example of a Fermi liquid.
Perturbative calculations of the composite fermion spectrum show an unphysical suppression
of the quasiparticle spectral weight at the composite fermion levels. We argue that this problem
might be resolved by a non-perturbative calculation; alternatively, the system might be unstable.

The original Laughlin theory [1] of the fractional quantum Hall effect explains the ground
state and low energy excitations for filling fractionsν = 1/(2k + 1), with k a positive
integer. Recent experiments [2] indicate a more general theory is needed to explain both
the gapless state atν = 1/2, and the hierarchy of states for a generalν. A promising
candidate involves new quasiparticles [3] called ‘composite fermions’ (CFs). CFs can be
viewed as ordinary electrons, to each of which is attached an artificial flux tube, containing
two flux quanta, oriented oppositely to the applied fieldB. The net mean fieldb acting
on the CFs becomesb = B − B̄1/2r , whereB̄1/2r = 4πrcρe/e is the mean field from the
artificial flux, andρe is the mean electron density; we see thatb = 0 whenν = 1/2r. The
set of FQHE states atν = p/(1 + 2rp), with p = 0, ±1, ±2, etc, then arises becauseb is
such that an integer number|p| of CF Landau levels is filled; the ‘principal hierarchy’ has
r = 1, and, as|p| → ∞, so ν → 1/2, the ‘bare’ CF gapω̃c = eb/m̃ goes to zero (herẽm
is the ‘bare’ CF mass, ignoring CF interactions).

A field theory of CFs [4] demonstrates that CF interactions resemble the gauge
interactions in the gauge theory of high-Tc superconductors [5, 6], and this has led to several
calculations of the renormalized properties of theν = 1/2 state [4] and the FQHE state
with fractions near 1/2; the FQHE calculations have looked at the renormalized gap [4, 7],
the current response [8], and thermodynamic properties like the compressibility and density
[7], in perturbative studies of the gauge interaction. However, these gauge interactions have
severe infra-red divergences; they contain a term [4]

D11(q, ω) = q

χqs − iγω
(1)

where 3> s > 2; if the Coulomb interactions between the CFs are screened by bringing
a conducting plate up to the 2d semiconductor, thens = 3, whereass = 2 for the
completely unscreened case. If the CF self-energy is calculated perturbatively, to first
order inD11(q, ω), then one finds, atν = 1/2, that atT = 0

6(p, ε) ∼
{

(i�0/ε)
1/3ε s = 3

ε log(ε) s = 2
(2)
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for p near theν = 1/2 Fermi surface. Non-perturbative calculations have also been done
of 6(ε) and of the response functions using eikonal expansions [9], 1/N expansions [10],
and renormalization group analysis [11]. A crucial feature of these, heavily emphasized in
[9, 10] and also in a recent paper of Stern and Halperin [12], is that Ward identities force
the correlation functions to be much less singular than the self-energy. The self-energy is
often considered to be unphysical since it is not gauge invariant (which causes theν = 1/2
self-energy to beinfinite [6] at any finiteT ). However, one can also argue that itspole
structureis gauge invariant and therefore physically meaningful. This is assumed by Stern
and Halperin [12], in their analysis of thes = 2 case, and certainly one naively expects
6(ε) to be well behaved away fromν = 1/2, at least ifε̄ � ω̃c, when the unrenormalized
gap ω̃c cuts off the IR divergences.

In this paper we take a closer look at this question, by calculating the self-energy6n(ε)

perturbatively, for a fermion in Landau leveln. This calculation is applied to both CFs and
also to an ordinary Fermi liquid in an applied field. We find that6n(ε) has a rather peculiar
singular structure. A less singular structure exists even for Fermi liquids.

We start from the usual lowest order perturbative expression for a 2d electronic self-
energy:

6n(ε) =
∫

d2q

(2π)2

∫ ∞

0

dω

π
ImU(q, ω)

∞∑
m=−n

|3m
n (q)|2

×
(

1 + nB(ω) − nf (n + m)

ε − (n + m)ω̃c − ω + iδ
+ nB(ω) + nf (n + m)

ε − (n + m)ω̃c + ω + iδ

)
(3)

wheren, m are Landau level indices,nf (r) = nf ((r + 1/2)ω̃c) is the Fermi distribution
for the rth Landau level,nB is the Bose distribution andU(ω, q) describes the relevant
interaction fluctuation. For gauge fluctuations

U(q, ω) ∼ −
∣∣∣∣kf × q̂

m

∣∣∣∣2

D11(q, ω) (4)

whereas for Fermi liquidsU(q, ω) ∼ f 2χ(q, ω), whereχ(q, ω) is the relevant fluctuation
propagator andf is the relevant Landau parameter [13]. As a concrete example we shall
choose the coupled electron–phonon Fermi liquid, for which

U(q, ω) ∼ 2ḡ2

(
qvf

m

)
qcs

ω2 − q2c2
s

(5)

wherecs is the sound velocity and̄g a dimensionless coupling. Finally,3m
n (q) is the overlap

matrix element between plane wave and Landau level states, given by [14]

|3m
n (q)|2 =

(
q2l2

0

2

)m

e−q2l2
0/2 (n + m)!

n!

∣∣∣∣Ln+m
n

(
q2l2

0

2

)∣∣∣∣2

(6)

whereLn+m
n is a Laguerre polynomial andl0 = (hc/eb)1/2 is the Landau length.

We calculate6n(ε) in a quasiclassical approximation [7, 8], assumingN � 1 filled
Landau levels (for CFs,N = |p|). The T = 0 calculations can be done analytically, and
for kT � ω̃c, one can expand about theT = 0 answers [7]; notice the CF theory is only
meaningful ifkT � ω̃c.

Consider first the CF gauge theory results; writing6 = 6
′ − i6

′′
, we find

6
′
n(ε̄) = −sgn(ε̄ − N)6

′′
n(ε̄)√

3
+ 2Ks√

3

( min(bε̄,bN)∑
m=0

(ε̄ − m)−α −
∞∑

m=max(bε̄+1,bN+1)

(m − ε̄)−α

)
(7)
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Figure 1. The real part6n(ε) of the self energy for composite fermions shown fors = 3 and
s = 2. We assumep = 5 (so thatν = 5/11). The temperature iskT = .03ω̃c and the chemical
potential is pinned halfway between the fifth and sixth Landau levels.

6
′′
n(ε̄) = Ks

( bε̄∑
m=0

(nB(ε̄ − m) + nf (N − m))(ε̄ − m)−α

+
∞∑

max(bε̄+1,0)

(nB(m − ε̄) + nf (m − N))(m − ε̄)−α

)
(8)

for s > 2 and

6
′
n(ε̄) = K2

π
log |m − ε̄|

(
−

bN∑
m=0

nf (m − N) +
∞∑

m=bN+1

nf (N − m)

)
(9)

6
′′
n(ε̄) = K2

( bε̄∑
m=0

(nB(ε̄ − m) + nf (N − m)) +
∞∑

m=max(0,bε̄+1)

(nB(m − ε̄) + nf (m − N))

)
(10)

for s = 2. In these equationsKs is a constant,̄ε = ε/ω̃c, br is the greatest integer less than
r, and the exponentα = (s − 2)/s is positive. We show6

′
n(ε) in figure 1 for s = 2, 3.

Whens = 3 there are inverse cube root divergences|ε̄ − r|−1/3 in 6
′
(ε̄) as one approaches

each Landau level, from either side. Whens = 2 these become logarithmic divergences.
However6

′′
n(ε) only shows divergences, fors > 2, whenε → rωc from above; it is finite

if ε̄ = r + 0−. As ω̃c → 0 the strength of these divergences vanishes and we are left with
the smooth curves of equation (2) above.

An apparent pathology in these results is seen by calculatingz−1
n (ε) = 1−∂6

′
n/∂ε; one
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then sees that asε approachesrω̃c, we get the divergencez−1
n (ε̄) ∼ ±|ε̄ − r|−(1+α), i.e.,

an inverse power divergence. That the wave-function renormalizationz−1
n should diverge

to +∞ might have been expected; but it also shows an unnerving divergence to−∞ near
each Landau level.

Notice that a divergence in|z−1
n | is not unique to these singular interactions, only the

sign. An equivalent calculation for the electron–phonon problem gives

6
′
n(ε̄) = Kφ

π

( ∞∑
m=bN+1

(m − ε̄) log

∣∣∣∣ωD + m − ε̄

m − ε̄

∣∣∣∣ +
bN∑

m=0

(ε̄ − m) log

∣∣∣∣ m − ε̄

m − ε̄ − ωD

∣∣∣∣ ) (11)

at T = 0, with a trivial generalization to finiteT . HereKφ is a constant andωD is a Debye
cut-off (i.e.,ωD = θD/ω̃c). In figure 2 we plot∂6

′
/∂ε, derived from (11); the divergences

now have the formz−1
n (ε) ∼ − log |ε̄ − r|, and we still get regions with very large positive

z−1
n (ε). This result clearly has nothing to do with any lack of gauge invariance of6n(ε).

90 95 100 105 110

-12

-10

-8

E

Figure 2. The derivative∂6
′
(ε)/∂ε for a Fermi liquid (here an electron–phonon system) with

100 filled Landau levels, calculated atT = 0.

The mathematical origin of these results is as follows. First, we assumed a quasi-particle
form for the internal fermion line in6n(ε); in fact we assumed a form, for a system of unit
area, given by

l2
0Gn(ε) = 1

ε − nω̃c − 6n(ε)
∼ z

ε − ñωc

(12)

with z a constant renormalization factor. (Note thatGn(ε) ∼ l2
0, in (12), because each

Landau level has degeneracyl−2
0 .) Second, our vertex3m

n has no structure arising from
the interactions, since we are working in lowest-order perturbation theory. This explains
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the divergence in|z−1|, for both theories it comes from the massive degeneracyl−2
0 in

each Landau level. From this point of view the positive divergence ofz−1 in the electron–
phonon case is no different in principle from what occurs for an Einstein phonon spectrum
ωq = δ(ω − �0).

On the other hand the novelty of the gauge theory result is that6
′
n(ε) shows a positive

divergence (forε > n) on both sides of the Landau level, thereby causing both positive
and negative divergences inz−1. Mathematically this arises because6

′′
n(ε) is essentially

composed of a set of asymmetric peaks aroundε̄ = r, of the form∼ (ε̄ − r)−αθ(ε̄ − r),
which have long tails for(ε̄ − r) � 1. The Hilbert transform of such a function doesnot
change sign as̄ε crossesr, unlessα > 1/2; for the CF gauge theory 06 α < 1/3. Thus
the sign change inzn(ε), each timeε crosses a Landau level energyrωc, is caused by these
long tails.

The consequences for the physical pole structure are interesting. The fermion spectral
function An(ε), defined as usual in terms ofGn(ε) by

Gn(ε) =
∫ ∞

−∞
dx

An(x)

ε − x + iδx

(13)

(whereδx = δsgnx and δ = 0+) goes to zero as|ε − rωc| → 0; e.g., fors > 2 (α > 0),
one has

An(ε) →
{ 6

5
√

3
(ε̄ − r)α (ε̄ > r)

cr(r − ε̄)2α (ε̄ < r)

}
as |ε̄ − r| → 0 (14)

wherecr is a constant. This structure is both unphysical and in obvious contradiction with
the form (12), assumed for the internal fermion lines—it makes no sense for the spectral
weight to vanish on the Landau levels. One may also define a renormalized quasiparticle
spectrumEn, given by

En = nω̃c − 6
′
n(En). (15)

This shows a rather complicated structure when one is well away from the Fermi surface
(i.e., |n − p| � 1), but for |En| < ω̃c one finds a unique pole, which can be used to
define a quasiparticle gap1 which agrees with that found previously [7, 12]. However, the
unphysical nature ofAn(ε) in (14), and its inconsistency with (12), brings these results into
question.

One’s first reaction to this, in the context of singular interactions, is that the theory
is intrinsically IR divergent anyway, and that the way to cure divergences is to do a
self-consistent calculation (just as in the zero-field case). There have been numerous
investigations of vertex corrections in the case of zero applied field (no Landau levels),
for both the gauge theories [7, 9–12] and the electron–phonon problem [15]. However, as
far as we know, no equivalent investigations have been done for the finite-field problem,
and in fact it is not completely obvious to us how the finite-field consistency problem can
be resolved. On physical grounds we expect that some remnant of the sharp Landau level
structure should survive interactions, i.e., that

l2
0Gn(ε) ∼ zn

ε − En

+ incoherent (16)

near the renormalized energiesEn (otherwise we would not get a fractional quantum Hall
effect). However, as we have just seen the large degeneracy atε = En will tend to
cause divergences inz−1

n . The way to eliminate these is clearly through divergent vertex
corrections to the 3-point vertex3, to cancel those inz−1

n . An attempt to devise a self-
consistent scheme of this kind is complicated by the IR divergences that already exist in the
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theory asω̃c → 0, and it appears as though a non-perturbative formulation of the problem
is necessary.

Another possibility is that there really is some kind of instability in the theory. In
experiments one might expect this instability to be eliminated by impurity scattering, which
leads to ‘Dingle broadening’ of the Landau levels, thereby destroying the sharp Landau
level structure which leads to the divergence in|z−1(ε)|. In most experiments the Dingle
temperature,TD, which parametrizes this broadening, is greater than 100 mK, and the
ratio 2πkTD/ω̃c is rarely less than 0.1. Thus the very narrow divergent behaviour will be
very difficult to see. However, we should note that we do not yet have a theory which
combines the effects of gauge interactions and impurity scattering on the CFs, apart from
perturbative results [4]. Although the experiments [2] are presently being analysed in terms
of conventional dHvA or SdH expressions involvingTD (or a relaxation time), it is likely
that a more realistic theory would involve at least an energy-dependent relaxation time,
depending very rapidly onε in the vicinity of the Landau levels.
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